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ABSTRACT 41 
 42 
Pedestrians and bicyclists from marginalized and underserved populations experienced disproportionate 43 
fatalities and injury rates due to traffic crashes in the US. This disparity among road users of different 44 
races and the increasing trend of traffic risk for underserved racial groups called for an urgent agenda for 45 
transportation policy making and research to ensure equity in roadway safety. Pedestrian and bicyclist 46 
crashes involved drivers and pedestrians/bicyclists; the latter were usually victims. Traditional safety 47 
studies did not account for the interaction between the two parties and assumed that they were 48 
independent from each other. In this study we paired the driver and pedestrian/bicyclist involved in the 49 
same crash to understand the socioeconomic and demographic make-up of the two parties involved in 50 
crashes and assessed the geographic distribution of these crashes and crash-contributing factors. For this 51 
purpose, we applied the latent class clustering analysis (LCA) to classify different crash types and analyze 52 
the patterns of the crashes based on the income and ethnicity of both drivers and victims involved in 53 
pedestrian and bicyclist crashes. We then used random forest algorithms and partial dependence plots 54 
(PDPs) to model and interpreted the contributing factors of the clusters in both pedestrian and bicyclist 55 
models. The clustering results showed a pattern of social segregation in pedestrian and bicyclist crashes 56 
that drivers and victims with similar socioeconomic characteristics tend to be involved in one crash. 57 
Pedestrian/bicyclist exposure, driver’s age, victim’s age, year of the car in use, annual average daily 58 
traffic (AADT), speed limit, roadbed width, and lane width were the most influential factors contributing 59 
to this pattern. Crashes that involved drivers and victims with lower income and non-white ethnicity 60 
tended to happen in the location with higher pedestrian/bicyclist exposure, higher speed limit, and wider 61 
road. The findings of this research can help to inform the decision-making process for improving safety to 62 
ensure equitable and sustainable safety for all road users and communities. 63 

Keywords: driver-victim pairs, pedestrian crashes, bicyclist crashes, latent class clustering, random forest 64 
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1. INTRODUCTION 66 

Crash statistics in the US showed that vulnerable road users (VRUs) from marginalized and underserved 67 
populations experienced disproportionate fatalities and injury rates due to traffic crashes. According to a 68 
report from Governors Highway Safety Association (GHSA), Black, Indigenous, and People of Color 69 
(BIPOC) experienced disproportionate traffic crash fatalities in the US from 2015-2019. The nationwide 70 
total traffic deaths were 145.6 and 68.5 per 100,000 population for American Indian/Alaska Native and 71 
Black, respectively, higher than 58.1 per 100,000 for total population (GHSA, 2021). For pedestrian 72 
crashes, a report from National Highway Traffic Safety Administration (NHTSA) showed that the 73 
pedestrian fatality rate for the white population is 1.5/100,000 in 2018, while the pedestrian fatality rate 74 
for the Black population is 2.94/100,000, which is twice than the white pedestrian fatality rate 75 
(Glassbrenner et al., 2022). Meanwhile, the motor vehicle traffic fatality for the Black population has 76 
increased by 23 percent from 2019 to 2020, while for total population, it only increased by 7 percent 77 
(NHTSA, 2021). These disparities in the distribution of traffic crashes among VRUs of different races 78 
and the increasing trend of traffic risk for underserved racial groups suggested an urgent agenda for 79 
transportation policy and research to ensure equity in roadway safety. 80 

Traditional approaches to roadway safety, such as predictive and systemic tools safety analysis, usually 81 
studied various road users and roadway infrastructure characteristics to predict the crash frequency and 82 
severity and develop implementable solutions for preventing crashes. At the individual level, roadway 83 
safety research investigated the influential factors such as the demographic and economic and behavioral 84 
features of both parties involved in the crash (Hasheminejad et al., 2018; Balakrishnan et al., 2019; 85 
Mokhtarimousavi et al., 2020), roadway environment such as speed limit, number of lanes, and traffic 86 
control of the road segment where the crash happened (Sivasankaran & Balasubramanian, 2020; Xiao et 87 
al., 2022), and other circumstances of the crash like weather condition and surface condition (Weiss et al., 88 
2014; Li et al., 2018). Human factors play an important role in a traffic crash for both parties. Typical 89 
human factors like belligerent driving behavior and violations of traffic rules are deeply rooted in the road 90 
users’ socioeconomic backgrounds, which shape the different levels of vulnerability for road users with 91 
different socioeconomic characteristics. Age, gender, income, and ethnicity were found to be major 92 
demographic and socioeconomic features in the disparity of crash vulnerabilities (Boufous et al., 2011; 93 
Zhao et al., 2013; Lombardi et al., 2017; Barajas, 2018; Billah et al., 2022). The difference in income and 94 
ethnicity for both parties not only have a potential influence on the road user’s driving, walking and 95 
cycling behavior, but also result in an environmental difference in roadway infrastructure of a traffic crash 96 
due to residential segregation of road users. For example, disadvantaged communities with more minority 97 
populations and populations of lower socioeconomic status were found to have less access to bike lanes 98 
across 22 large US cities (Braun et al., 2019). This disparity in crash risks among income and ethnic 99 
groups was one of the major concerns for scholars and practitioners who want to ensure the principle of 100 
environmental justice by mitigating the crash risk for low-income and minority groups through improving 101 
the roadway infrastructure for them (Kravetz and Noland, 2012; Rebentisch et al., 2019). 102 

VRU crashes usually involve two parties: drivers and VRUs like pedestrians or bicyclists. Drivers are 103 
typically reported as the party at-fault in pedestrian/bicyclist-involved crashes, and pedestrians/bicyclists 104 
are the victims. Previous research has investigated both parties' demographic and behavioral factors in 105 
disaggregated analysis (Hasheminejad et al., 2018; Salon and Mclntyre, 2018; Balakrishnan et al., 2019;). 106 
Although these studies do include the characteristics of both drivers and VRUs in the analysis, they 107 
usually treated the characteristics of drivers and victims as unrelated independent variables in their 108 
theoretical assumptions and modeling process, which might overlook the potential interaction between 109 
two parties. The close-to-home effect in roadway crashes suggested that the drivers and VRUs involved in 110 
the same crash might live near each other and might share similar socioeconomic and demographic 111 
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characteristics (Burdett et al., 2017; Ulak et al., 2019). Under this assumption, the characteristics of 112 
drivers and victims might be correlated, and understanding the occurrence of a crash should consider the 113 
similarity of drivers and victims. This raised research questions about the socioeconomic patterns of 114 
drivers and victims involved in one crash: To what extent the drivers and victims involved in one crash 115 
share similar demographic and economic features? Are there potential crash patterns that can be found 116 
based on their demographic and economic features? How are the different crash patterns distributed 117 
geographically? And what factors shape the distribution of these patterns of crashes? 118 

The remainder of this paper is organized as follows. In the next section we provide a literature review. In 119 
section 3 we describe the data which is then followed by the methodological approach and modeling 120 
techniques. In section 5 we describe the study findings and provide discussions. The paper ends with the 121 
conclusions, references and Appendix.  122 

2. LITERATURE REVIEW 123 

2.1 Vulnerable Road Users in Traffic Crashes 124 

Crashes and their consequences are not created equally for all road users. VRUs, such as pedestrians and 125 
bicyclists, are more likely to be injured than drivers since they are less protected. There are also “implicit” 126 
VRUs of certain demographic and economic groups who are usually found to have a higher chance of 127 
getting involved in a crash or receiving more severe consequences. For example, children and the elderly 128 
were considered more vulnerable than adult pedestrians and bicyclists (Braver, 2004; Ivan et al., 2019; 129 
Ding et al., 2020). Behavioral and environmental differences were two major reasons contributing to the 130 
vulnerability of implicit VRUs. Behavioral difference refers to the particular groups of VRUs who 131 
showed riskier behavior when driving, walking, or biking. For example, younger drivers were more likely 132 
to intentionally engage in risky driving behaviors such as mobile phone use (Scott-Parker and Oviedo-133 
Trespalacios, 2017; Oviedo-Trespalacios and Scott-Parker, 2018; Eren and Gauld. 2022). Environmental 134 
difference refers to specific groups of VRUs who might live and travel in places with higher traffic 135 
exposure and more unsafe roadway infrastructure. For example, Rothman et al. (2020) compared the road 136 
infrastructure for low-income and high-income communities and found that fewer speed humps and lower 137 
road classification might result in higher rates of child pedestrian crashes in low-income communities in 138 
Toronto, Canada. 139 

2.2 Vulnerability of Pedestrians and Bicyclists 140 

Pedestrians/bicyclists are usually considered as VRUs in road safety literature, but certain groups of 141 
pedestrians/bicyclists are more vulnerable according to their age (Boufous et al., 2011; Koopmans et al.; 142 
2015, Boele-Vos et al.; 2017, Das et al., 2019), gender (Zhao et al., 2013; Toran Pour et al., 2018; 143 
Algurén and Rizzi, 2022)., income (Siddiqui et al. 2012; Barajas, 2018), ethnicity (Kravetz and Noland; 144 
2012, Steinbach et al. 2016, Barajas, 2018), among others. Nearly one-third of pedestrian crashes and 145 
two-thirds of bicyclist crashes involved school-aged children, according to police-reported crash data in 146 
26 states in the US (Wheeler-Martin et al., 2020). Significant higher crash risks have also been found in 147 
bicyclists younger than 30 years and older than 65 years of age when controlling for exposure in Spain 148 
from 1993 to 2019 (Martínez-Ruiz et al., 2014). Though there was no solid evidence showing that male 149 
pedestrians or bicyclists have higher crash risks than their counterparts, a few studies found male 150 
pedestrians and bicyclists have less rule compliance and lower risk perception than females (Tom and 151 
Granié, 2011; Prati et al., 2019). The behavioral differences among age and gender groups play a major 152 
role in the disparity of roadway crashes, while the environmental differences better explained the 153 
disparity among income and ethnic groups. Research has found that low-income and minority groups 154 
were exposed to higher crash risk in pedestrian and bicyclist crashes in regions and cities of the United 155 
States (Kravetz and Noland, 2012; Barajas, 2018). Scholars have also linked the disparity between low-156 
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income and minority communities and high-income and majority communities with traffic exposure and 157 
quality of roadway infrastructure and provided a potential explanation for this disparity from the 158 
environmental difference (Fuller and Winters, 2017, Wang and Lindsey, 2017, Braun et al., 2019). For 159 
example, Ferenchak and Marshall (2021) investigated the installation of bicycling facilities across 29 US 160 
cities and found a lower rate of bicycling facility installation in the block groups with more people of 161 
color. Recent research in Oregon has found that lower median income and a higher proportion of the 162 
BIPOC population are associated with more pedestrian crashes at the census tract level considering 163 
factors from roadway infrastructure, land use, and socioeconomic background (Roll and McNeil, 2022). 164 
The disproportionate share of low-income and minority groups in traffic crashes has called for equity and 165 
environmental justice considerations in transportation planning and policy (Kravetz and Noland, 2012; 166 
Rebentisch et al., 2019). Besides, the population with lower educational attainment and limited English 167 
speaking has also been found to have higher crash risks at the aggregated level. (Barajas, 2018; Saha et 168 
al., 2018). 169 

2.3 Vulnerability of Drivers 170 

Drivers’ socioeconomic features, attitudes toward driving, and driving behavior are primary contributing 171 
factors to the occurrence of roadway crashes (Adanu et al., 2017; Kemnitzer et al., 2019). Like 172 
pedestrians and bicyclists, certain groups of drivers are more vulnerable to roadway crashes, primarily 173 
due to differences in behavior and environmental factors. In the safety literature, these groups of drivers 174 
were divided mainly by their socioeconomic and demographic characteristics in the literature, like age 175 
(Lombardi et al., 2017; Gong and Fan, 2017; Liang and Yang, 2022) and gender (Russo et al., 2014; 176 
Pulido et al., 2016; Billah et al., 2022). Regev et al. (2018) found that crash risk is highest for drivers 177 
aged 21 to 29 in single-vehicle and multi-vehicle crashes from 2002 to 2012 in Great Britain when 178 
controlling an exposure measurement considering the driver’s trip number and population size. Billah et 179 
al. (2022) found a more significant association between male drivers and the likelihood of crashes mainly 180 
due to riskier driving behaviors of male drivers compared to their counterparts, such as speeding, driving 181 
under the influence, and lane departure. Since drivers’ income level and ethnicity were usually not 182 
publicly available in police-reported crash data, research represents the economic status of drivers using 183 
aggregated census data of drivers’ residential ZIP code (Lee et al., 2021; Sagar et al., 2021). Though it 184 
was not without bias, this surrogate measurement provides a feasible way to investigate the driver’s 185 
economic status in police-reported crashes. In the region where drivers’ ethnic information was 186 
unavailable, some researchers have also developed alternative approaches to estimate the drivers’ race 187 
and ethnicity. For example, Sartin et al. (2021) employed a Bayesian Improved Surname Geocoding 188 
(BISG) method to estimate the population-level ethnic information for drivers in New Jersey. 189 

2.4 Linking Drivers and Victims in Crash Analysis 190 

Demographic and economic characteristics of drivers and victims should be considered in the crash 191 
analysis since specific demographic and economic groups of drivers and victims are more vulnerable than 192 
others. Existing literature considered demographic and economic features from both parties (Salon and 193 
Mclntyre, 2018; Balakrishnan et al., 2019). For example, Behnood and Mannering (2017) incorporated 194 
both bicyclists’ characteristics (gender, age, ethnicity, etc.) and drivers’ characteristics (gender, age, 195 
ethnicity, etc.) in their crash severity model of bicyclist crashes and found bicyclists’ and drivers’ race 196 
and gender are the most important determinants of injury severity. However, these studies treated the 197 
characteristics of drivers and victims as unrelated variables independent in their quantitative analysis. 198 
This assumption might be problematic since potential spatial association might exist between drivers and 199 
victims, which might lead to the similarity of social characteristics between drivers and victims. A series 200 
of research investigating the proximity of crashes to the residential location of drivers/victims found a 201 
close-to-home effect in crashes in which most of the crashes happened near the residence of both drivers 202 
and victims (Burdett et al. 2017; Ulak et al., 2019). This close-to-home effect indicated that drivers and 203 
victims involved in a crash might share the same neighborhood and similar socioeconomic and 204 
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demographic characteristics. Treating the socioeconomic characteristics of drivers and victims as 205 
uncorrelated variables might ignore the spatial similarity of both parties and may lead to potential bias in 206 
estimation. Thus, it is vital to consider the similarity of their characteristics in crash analysis.  207 

Linking the characteristic of drivers and victims as driver-victim pairs and finding the hidden crash 208 
patterns within driver-victim pairs can reveal the similarity between the drivers and victims in the same 209 
crash. Clustering approaches have been usually employed to classify crashes by maximizing similarity 210 
and minimizing dissimilarity among clusters to find the potential patterns in roadway crashes. Latent class 211 
clustering analysis is one of the most popular approaches for revealing different crash patterns recently. 212 
Sun et al. (2019) employed a latent class clustering method to classify pedestrian crashes in Louisiana and 213 
found five clusters based on the factors from pedestrians’ demographic features, crash-related factors, and 214 
environmental factors. Samerei et al. (2021) also used latent class clustering analysis to classify bicyclist 215 
crashes in Australia and found two clusters of crashes with different characteristics of bicyclists, road 216 
environment, traffic control, and crash circumstance.  217 

3. DATA PREPARATION 218 

Data used in this study includes counts of pedestrian and bicyclist crashes, crash specific information, 219 
socioeconomic characteristics of drivers and victims, roadway infrastructure characteristics, and traffic 220 
exposure. Descriptive information of the variables is shown in Table 1. 221 

3.1 Crashes and Crash Specific Information 222 

This research aimed to investigate the spatial distribution and contributing factors for driver-victim pairs 223 
in pedestrian/bicyclist crashes in Harries County, Texas, whose county seat is Houston. To collect the 224 
crashes and related information, we obtained four-year (2017-2020) records of pedestrian and bicyclist 225 
crashes from the Crash Records Information System (CRIS) of the Texas Department of Transportation 226 
(TxDOT). We identified pedestrian/bicyclist crashes based on the type of primary victim (pedestrian or 227 
bicyclist) involved in the crash. After removing redundant information and crash cases with missing 228 
critical information, we kept only one driver and one primary victim for each crash event. As a result, 229 
2,822 pedestrian crashes and 1,123 bicyclist crashes were identified with both the driver’s and victim’s 230 
economic and demographic information available. There were 1,659 (58.8%) male and 1,163 (41.2%) 231 
female victims in pedestrian crashes, with an average age of 39.3. For bicyclist crashes, there were 924 232 
(82.3%) male and 199 (17.7%) female victims with an average age of 37.5. Eight factors in crash specific 233 
information were retrieved from the CRIS database, including time of the day (CR_TimeDay), whether 234 
the crash happened on a workday (CR_Workday), season (CR_Season), weather condition (CR_Weather), 235 
surface condition (CR_Surface), whether crash happened on construction zone (CR_Construct), whether 236 
the crash occurred at the intersection (CR_Intersec), and years of the car was in use (CR_CarUsedYr). 237 

3.2 Economic and Demographic Characteristics  238 

The drivers' and victims' economic and demographic characteristics were usually missing in a publicly 239 
accessible crash database for privacy and liability concerns. From the CRIS database, we retrieved the 240 
driver’s ethnicity (DR_Ethincity), age (DR_Age), and gender (DR_Gender), and victim’s ethnicity 241 
(VT_Ethincity), age (VT_Age), and gender (VT_Gender). However, the CRIS database did not include the 242 
income information of drivers and victims. Thus, we estimated the driver’s and victim’s income 243 
information by the income level of their residential census tract based on median household income in 244 
2019 American Community Survey (ACS) 5-year estimates. To obtain the driver’s census tract, we 245 
matched the ZIP code of drivers with their census tract in ArcGIS Pro. The corresponding census tract of 246 
the driver was where the centroid of the ZIP code is situated. The victim’s residential census tract was 247 
hypothesized to be the same as the census tract where the crash happened. There were 786 census tracts in 248 
Harris County with an average area of 5.9 km2, which is within the range of acceptable walking and 249 
biking distance (1,750-2,122 meters) (Rahul and Verma, 2014). Besides, most pedestrian and bicyclist 250 
crashes happened near the victim’s home (Steinbach et al., 2013; Ulak et al., 2019). Therefore, we 251 
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assumed the crash location was the same as the victim’s residential census tract. Finally, we recoded the 252 
driver’s income (DR_Income) and victim’s income (VT_Income) to ordinal variables in five levels: low 253 
income, lower to medium income, medium income, medium to high income, and high income, according 254 
to the five quintiles of their residential census tracts in the research area. In our dataset, there are 73 255 
driver-victim pairs in which the driver and victim live in the same census tract, which accounts for the 256 
3.14% of the total number of pedestrian crashes; for bicyclist crashes, there are 50 driver-victim pairs in 257 
which the driver and victim live in the same census tract, which accounts for 5.18% of the total bicyclist 258 
crashes. This small proportion of driver-victim pairs shows that assigning the driver-victim pair to the 259 
same income level (despite the potential differences) does not introduce significant error to overall model 260 
performance. 261 

3.3 Roadway Infrastructure Characteristics 262 

Characteristics of roadway infrastructure were collected from the Roadway Inventory of TxDOT, which 263 
was a GIS-based road network database storing roadway information in Texas. Data for the roadway 264 
inventory was updated annually, and we used the 2020 version, which conformed with the time span of 265 
our crash events. We selected 11 characteristics of the roadway infrastructure where the crash happened, 266 
including road functional classification (RD_FuncCls), speed limit (RD_SpdLmt), whether the crash 267 
occurred in an urban area (RD_Urban), roadbed width which comprises shoulder width and surface 268 
width) (RD_RdWth), the number of lanes (RD_LnNum), lane with (RD_LnWth), median width 269 
(RD_MedWth), inside shoulder width (RD_SWthIn), outside shoulder width (RD_SWthOut), existence of 270 
left curb (RD_CurbL), and existence of right curb (RD_CurbR). 271 

3.4 Exposure 272 

Vehicular, pedestrian, and bicyclist exposure variables were also taken into consideration in this study. 273 
Vehicular exposure of the road segments where the crash happened was measured as the Annual Average 274 
Daily Traffic (AADT) from the TxDOT Roadway Inventory database for each year of the crash events. 275 
However, the scarcity of pedestrian and bicyclist exposure data was one of the primary limitations in 276 
crash modeling. Scholars have used emerging crowdsource data to estimate pedestrian and bicyclist 277 
exposure, such as bicycle count data from Strava (Dadashova and Griffin, 2020; Dadashova et al., 2020). 278 
In this study, we used a scaling approach to estimate the bicyclist and pedestrian exposure leveraging 279 
observed pedestrian and bicyclist count data available from Texas Bicycle and Pedestrian Data Exchange 280 
(BP|CX) (https://mobility.tamu.edu/bikepeddata/) and crowed-sourced pedestrian and bicyclist count data 281 
from Strava. The estimated pedestrian and bicyclist counts were averaged daily and calculated annually 282 
using the scaling approach for Strava data by Dadashova et al. (2020). Using this approach, we calculated 283 
the scaling factors (See Table S1) for each year by dividing the observed pedestrian/bicyclist counts with 284 
the crowed-sourced pedestrian/bicyclist counts and calculated the estimated pedestrian/bicyclist counts by 285 
multiplying the scaling factors with the crowed-sourced pedestrian/bicyclist counts on other road 286 
segments.  287 

  288 
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Table 1. Descriptive Statistics of Variables 289 

Categorical Variables Pedestrian crashes Bicyclist crashes 

CR_TimeDay 

1 = 0:00-6:00 254(9.0%) 51(4.5%) 

2 = 6:00-12:00 749(26.5%) 303(27.0%) 

3 = 12:00-18:00 839(29.7%) 449(40.0%) 

4 = 18:00-24:00 980(34.7%) 320(28.5%) 

CR_Workday 
1 = Monday to Friday 2199(77.9%) 856(76.2%) 

2 = Saturday to Sunday 623(22.1%) 267(23.8%) 

CR_Season 

1 = Spring 746(26.4%) 243(21.6%) 

2 = Summer 679(24.1%) 300(26.7%) 

3 = Autumn 606(21.5%) 293(26.1%) 

4 = Winter 791(28.0%) 287(25.6%) 

CR_Weather 
1 = Clear 2093(74.2%) 873(77.7%) 

2 = Others 729(25.8%) 250(22.3%) 

CR_Surface 
1 = Dry 2495(88.4%) 1039(92.5%) 

2 = Others 327(11.6%) 84(7.5%) 

CR_Construc

t 

1 = At construction zone  51(1.8%) 5(0.4%) 

2 = Not at construction 

zone 2771(98.2%) 1118(99.6%) 

CR_Intersec 
1 = At intersection 1034(36.6%) 661(58.9%) 

2 = Not at intersection 1788(63.4%) 462(41.1%) 

DR_Income 

1 = low income 454(16.1%) 193(17.2%) 

2 = low to medium 

income 614(21.8%) 229(20.4%) 

3= medium income 814(28.8%) 280(24.9%) 

4 =medium to high 

income 368(13.0%) 161(14.3%) 

5 = high income 572(20.3%) 260(23.2%) 

DR_Ethnicity 

1 = White 888(31.5%) 384(34.2%) 

2 = Hispanic 896(31.8%) 350(31.2%) 

3 = Black 800(28.3%) 297(26.4%) 

4 = Asian 185(6.6%) 70(6.2%) 

5 = Others 47(1.7%) 20(1.8%) 

DR_Gender 
1 = Male 1632(57.8%) 626(55.7%) 

2 = Female 1190(42.2%) 497(44.3%) 

VT_Income 

1 = low income 600(21.3%) 211(18.8%) 

2 = low to medium 

income 762(27.0%) 286(25.5%) 

3= medium income 559(19.8%) 210(18.7%) 

4 =medium to high 

income 389(13.8%) 156(13.9%) 

5 = high income 512(18.1%) 260(23.2%) 

VT_Ethinicit

y 

1 = White 935(33.1%) 485(43.2%) 

2 = Hispanic 852(30.2%) 274(24.4%) 
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Categorical Variables Pedestrian crashes Bicyclist crashes 

3 = Black 843(29.9%) 299(26.6%) 

4 = Asian 131(4.6%) 52(4.6%) 

5 = Others 54(1.9%) 11(1.0%) 

VT_Gender 
1 = Male 1659(58.8%) 924(82.3%) 

2 = Female 1163(41.2%) 199(17.7%) 

RD_FuncCls 
1 = Collectors 782(27.7%) 268(23.9%) 

2 = Local roads 2044(72.4%) 855(76.1%) 

RD_Urban 
1 = Urban area 2818(99.9%) 1117(99.5%) 

2 = Rural area  4(0.1%) 6(0.5%) 

RD_CurbL 
1 = Left curb exists 2689(95.3%) 1092(97.2%) 

2 = No left curb 133(4.7%) 31(2.8%) 

RD_CurbR 
1 = Right curb exists 2690(95.3%) 1093(97.3%) 

2 = No right curb 132(4.7%) 30(2.7%) 

RD_LnWth 

(feet) 

1 = Less than 10 1527(54.1%) 187(16.7%) 

2 = 10 to 12 884(31.3%) 534(47.6%) 

3 = 12 to 14 139(4.9%) 313(27.0%) 

4 = Greater than 14  272(9.6%) 89(7.9%) 

Continuous Variables Mean Min Max SD Mean Min Max SD 

CR_CarUsedYr 8.3 0.0 43.0 5.8 8.2 0 43 6.1 

DR_Age 41.6 15.0 118.0 16.6 43.4 8 118 17.3 

VT_Age 39.3 1.0 100.0 19.5 37.5 3 100 19 

RD_SpdLmt (miles per hour) 36.7 20.0 65.0 11.2 37.4 20 65 12 

RD_RdWth (feet) 33.3 14.0 106.0 14.1 30.7 16 106 12.8 

RD_LnNum 2.9 1.0 6.0 1.1 2.7 2 6 1 

RD_LnWth 11.4 5.0 27.0 2.8 11 5 27 2.3 

RD_MedWth (feet) 0.3 0.0 138.0 3.6 1.1 0 138 9.4 

RD_SWthIn (feet) 0.1 0.0 10.0 0.6 0.1 0 10 0.6 

RD_SWthOut (feet) 0.1 0.0 10.0 0.8 0.1 0 10 1 

EX_Ped 36.3 0.3 340.7 104.0 Not Applicable 

EX_Cyc Not Applicable 14.1 0.1 340.7 30.8 

AADT 9864.7 50.0 49968.0 9954.5 8601 69 49968 9565.4 

4. METHODOLOGY 290 

In this study, we applied a latent class clustering analysis (LCA) to identify the patterns in driver-victim 291 
pairs according to the driver’s and victim’s income and ethnicity in pedestrian and bicyclist crashes. We 292 
also mapped the crash patterns in the study area to reveal their spatial distribution. Then, we used random 293 
forest algorithm to investigate the relative contribution of factors to the crash patterns from crash specific 294 
information, economic and demographic characteristics of drivers and victims, roadway infrastructure, 295 
and exposure. Finally, we drew partial dependence plots (PDPs) for the most important factors to interpret 296 
their influences on certain crash patterns. 297 
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4.1 Latent Class Clustering Analysis 298 

To investigate the possible patterns in driver-victim pairs, we applied LCA to divide the pedestrian and 299 
bicyclist crashes according to the victim’s and driver’s socioeconomic characteristics. Clustering analysis 300 
is an unsupervised machine learning method that can separate the crashes into homogenous subgroups, 301 
which have the largest similarities within each subgroup and the largest dissimilarity between each 302 
subgroup (Sivasankaran and Balasubramanian, 2020). We used a probability-based clustering approach 303 
(i.e., Latent Class Clustering), which has recently been applied in several roadway safety research studies 304 
(Sun et al., 2019, Samerei et al., 2021). The Latent Class Clustering approach has several advantages over 305 
other clustering approaches (e.g., K-means) in that it 1) can calculate the probability of a crash of being in 306 
a certain cluster by maximum likelihood method; 2) does not necessarily need to standardize the variables 307 
beforehand; 3) does not need to specify the number of clusters before performing the clustering; 4) can 308 
generate statistical criteria afterward to select the best model with a certain number of clusters 309 
(Sasidharan et al., 2015, Sun et al., 2019). The mathematical formula of the LCA approach is shown 310 
below (Samerei et al., 2021): 311 

𝑃(𝒀𝑖 = 𝑦) = ∑𝜌∏∏𝜃𝑚𝑛|𝑙
𝑙(𝑦𝑚=𝑛)

𝑟𝑚

𝑛=1

𝑀

𝑚=1

𝐾𝑐

𝑘=1

 312 

Where 𝒀𝑖 = (𝒀𝑖1, …𝒀𝑖𝑀) is the observation (crash) 𝑖’s responses in 𝑀 category, where the possible 313 
values of 𝒀𝑖𝑀 are 1,… , 𝑟𝑚; 𝑟𝑚 represents the crash 𝑖’s 𝑟th attribute in 𝑚 category; 𝐾𝑐 represents the 314 
number of latent classes to be estimated; 𝑙(𝑦𝑚 = 𝑛) is the indicator function to be 1 if 𝑦 equals 𝑛 and to 315 
be 0 when y is not 1; 𝜌 is the probability of latent class membership probability and 𝜃 is the conditional 316 
probabilities of responses on latent class membership. The number of clusters can influence the goodness-317 
of-fit of the latent class clustering model. We employ Bayesian Information Criteria (BIC) to select the 318 
appropriate number of clusters. LCA modeling and BIC calculation were conducted by package polPCA 319 
in R. 320 

4.2 Random Forest Algorithm and Partial Dependence Plot 321 

Random forest algorithm is known as a tree-based ensemble machine learning technique. It is built upon a 322 
multitude of weak decision tree models to form a strong “forest” by averaging the predictions from all the 323 
individual regression trees or by taking the majority vote from the classification tree. It can be applied in 324 
both classification and regression, and we use the random forest algorithm for classification in this task. 325 
The random forest algorithm employs a bagging technique to repeatedly select a random sample from the 326 
training dataset and use the sample to fit a decision tree. Let feature set 𝑋 be {𝑥1, 𝑥2… , 𝑥𝑛}, target set 𝑌 327 
be {𝑦1, 𝑦2… , 𝑦𝑛}, and 𝑖 = 1,2,… 𝐼, the process of random forest can be represented as: 328 

1) Select a random sample set from {𝑋,𝑌}, which is denoted as {𝑥𝑖,𝑦𝑖}; 329 
2) Train a decision tree 𝑓𝑖 on the sample set {𝑥𝑖,𝑦𝑖}; 330 
3) Repeat procedures 1 and 2 for 𝐼 times to get 𝐼 decision trees {𝑓1, 𝑓2… , 𝑓𝐼}; 331 

4) Aggregating the prediction results for any random sample 𝑥 to get function 𝑓 for the random 332 
forest. For classification, it takes the majority vote of the target from all individual decision trees, 333 

denoted as 𝑓(𝑥) = max
𝑖=1,2,…,𝐼

𝑓𝑖(𝑥𝑖). 334 

Several parameters can affect the performance of the model: for example, the number of decision trees 335 
(𝐼). To optimize performance, we employed a random search method for optimal parameters with 336 
successive halving to automatically find the best combination of parameters (Scikit-Learn, 2022). To 337 
investigate the impact of variables in clusters of driver-victim pairs, we calculated the feature importance 338 
for each variable to assess the relative contribution of all the variables (Masís, 2021). Furthermore, we 339 
used the PDPs, which is one of the model-agnostic interpretable machine learning approaches to reveal 340 
the marginal effect of a feature in machine learning models (Masís, 2021). Random forest algorithm was 341 
implemented by Scikit-learn, and PDPs are generated by pdpbox in Python.  342 
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5. RESULTS 343 

5.1 Results of Latent Class Clustering Analysis 344 

Identifying the Number of Clusters 345 

The LCA models were performed on the economic and demographic characteristics of the driver-victim 346 
pairs to find the patterns within the driver-victim pairs regarding their income level and ethnicity. Figure 347 
1 shows the graphs of BIC value with a different number of clusters for pedestrian crashes and bicyclist 348 
crashes. As indicated by the graph, the BIC values in the LCA of pedestrian crashes increase along with 349 
the increasing number of clusters, and the minimum BIC value is generated when the number of clusters 350 
is set as two. The trend of BIC values in the LCA of bicyclist crashes is similar to pedestrian crashes, 351 
achieving its lowest value when there are two clusters. Thus, we report the results of the LCA for 352 
pedestrian crashes and bicyclist crashes when there are two clusters in each model. 353 

 354 

Figure 1. Number of Clusters and Their Respective BIC Value in Pedestrian and Bicyclist Crashes 355 

Clustering Crashes by LCA 356 

Figure 2 shows the distribution of the driver’s and victim’s income level and ethnicity in each cluster in 357 
both models. Detailed information about the clustering results can be found in Table S2. For 358 
pedestrian/bicyclist crashes, the driver-victim pairs are clustered into crashes involving “lower income 359 
non-white driver and lower income non-white victim” (LN-LN crashes) and crashes involving “higher 360 
income white driver and higher income white victim” (HW-HW crashes), respectively. In the pedestrian 361 
crash model, two clusters are almost evenly divided (51.5% for LN-LN crashes and 48.5% for HW-HW 362 
crashes). Figure 2.a shows the two clusters and the corresponding distribution of drivers’ and victims' 363 
income levels and ethnicity in the pedestrian crash model. For driver’s characteristics, white drivers make 364 
9.2% of LN-LN crashes, while its probability is 55% in HW-HW crashes. The income level of drivers in 365 
LN-LN crashes concentrates in the low income to medium income categories. In contrast, the income 366 
level of drivers in HW-HW crashes is distributed in medium income to high income categories. Victims 367 
in LN-LN crashes have a higher probability of being non-whites (81.9%), while victims in HW-HW 368 
crashes have the highest probability of being white (49.1%). Victims' income level is also distributed on 369 
low income to medium income in LN-LN crashes and medium income to high income in HW-HW 370 
crashes. Clustering results in bicyclist crashes appear to have similar patterns of economic and 371 
demographic characteristics for drivers and victims with pedestrian crashes. The bicyclist LN-LN crashes 372 
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have a higher probability of involving non-white drivers (90.6%), drivers from lower income levels and 373 
non-white victims (79.7%), and victims from lower income levels. In comparison, bicyclist HW-HW 374 
crashes have a higher chance of involving white drivers (54.7%), drivers from higher income levels, white 375 
victims (62.1%), and victims from higher income levels. Notable socioeconomic patterns of driver-victim 376 
pairs have been revealed in these results, which show the social segregation of pedestrian and bicyclist 377 
crashes. This social segregation of crashes demonstrates that the driver and victim involved in a crash are 378 
likely to be similar regarding their income and ethnicity. Non-white and low-income drivers and non-379 
white and low-income victims are more likely to be involved in one crash, while white and high-income 380 
victims are more likely to get into crashes by white and high-income drivers.  381 

 382 

Figure 2. Clustering Results for Pedestrian Crashes and Bicyclist Crashes 383 

As discussed before, there are potential spatial patterns due to the spatial proximity of crashes, so we plot 384 
the density maps of pedestrian and bicyclist crashes based on crash location to observe the spatial 385 
distribution of LN-LN and HW-HW crashes (See Figure 3). Figure 3.a and Figure 3.b show the density of 386 
pedestrian LN-LN crashes and HW-HW crashes of pedestrian crashes and bicyclist crashes, respectively. 387 
The concentrated area of both LN-LN and HW-HW crashes overlay in the downtown area, which 388 
suggests that downtown is the nucleus for crashes of all kinds. Except for downtown Houston, two types 389 
of crashes show spatial segregation in which the LN-LN crashes concentrate on three major areas, 390 
including southern, northern, and further southwest areas near downtown. In contrast, HW-HW crashes 391 
happened more in a closer west region near downtown. Bicyclist crashes show a more segregated pattern 392 
for which LN-LN crashes are denser in the western area near downtown, and HW-HW crashes happened 393 
more in the eastern, southern, northern, and further southwest areas near downtown. Compared with 394 
bicyclist crashes, pedestrian crashes have a denser distribution within the research area.  395 
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 396 

Figure 3. Density Map of LN-LN and HW-HW Crashes for Pedestrian and Bicyclist Crashes 397 

Distance between the crash and residence of both parties is important in understanding LN-LN crashes 398 
and HW-HW crashes due to the difference in travel behaviors and activity space between drivers and 399 
victims from different demographic and socioeconomic backgrounds. We map the trajectory of driver-400 
victim pairs based on the crash location and the centroid of the driver’s ZIP code to investigate the spatial 401 
characteristics of driver-victim pairs for each cluster (See Figure S1). Downtown Houston is the nucleus 402 
of all four types of crashes according to the distribution of driver-victim pairs. Compared with LN-LN 403 
crashes, HW-HW crashes trajectory are sparser for both pedestrian and bicyclist crashes. Figure 4 plots 404 
the probability density for the distance of driver-victim pairs, showing that LN-LN crashes have a more 405 
positively skewed distribution than their counterparts. The geographical and probability distribution of 406 
driver-victims pairs indicate that LN-LN crashes are more likely to involve a crash location when a driver 407 
lives nearby, while drivers in HW-HW crashes might live farther away from the crash location. This 408 
might be because drivers from higher-income and majority-white communities have more resources and 409 
capability to travel further away, while drivers in lower-income and minority communities are limited in 410 
their activity space hence getting into a crash within their community. 411 

 412 

Figure 4. Probability Density Plot for Distance of Driver-Victim Pairs 413 
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5.2 Random Forest Results 414 

Relative importance of selected variables 415 

Table 3 shows the variables’ feature importance of the random forest algorithm to classify whether a 416 
crash belongs to LN-LN crashes or HW-HW crashes for pedestrian and bicyclist crashes, respectively.  417 

 418 

Table 3. Feature Importance of Random Forest Model for Pedestrian and Bicyclist Crashes 419 

Pedestrian Crash model Bicyclist Crash model 

Variables Feature Importance Rank Variables Feature Importance Rank 

EX_Ped 0.260 1 EX_Cyc 0.227 1 

DR_Age 0.132 2 VT_Age 0.114 2 

VT_Age 0.117 3 DR_Age 0.103 3 

CR_CarUsedYr 0.100 4 EX_AADT 0.091 4 

EX_AADT 0.098 5 CR_CarUsedYr 0.089 5 

RD_SpdLmt 0.049 6 RD_SpdLmt 0.066 6 

RD_RdWth 0.045 7 RD_RdWth 0.056 7 

CR_Season 0.033 8 CR_TimeDay 0.037 8 

CR_TimeDay 0.031 9 CR_Season 0.034 9 

RD_LnWth 0.024 10 RD_LnWth 0.031 10 

VT_Gender 0.014 11 VT_Gender 0.025 11 

CR_Intersec 0.013 12 RD_LnNum 0.019 12 

RD_LnNum 0.013 13 CR_Workday 0.015 13 

DR_Gender 0.012 14 CR_Weather 0.015 14 

CR_Surface 0.012 15 CR_Intersec 0.015 15 

CR_Workday 0.011 16 DR_Gender 0.014 16 

CR_Weather 0.010 17 RD_FuncCls 0.014 17 

RD_FuncCls 0.010 18 CR_Surface 0.011 18 

CR_Construt 0.005 19 RD_MedWth 0.006 19 

RD_CurbR 0.004 20 RD_SWthIn 0.005 20 

RD_CurbL 0.004 21 RD_SWthOut 0.005 21 

RD_SWthIn 0.002 22 RD_CurbL 0.004 22 

RD_SWthOut 0.001 23 RD_CurbR 0.003 23 

RD_MedWth 0.001 24 RD_Urban <0.001 24 

RD_Urban <0.001 25 CR_Construt <0.001 25 

 420 

Since we only got two clusters in each model, the LN-LN crashes are taken as the reference group. Thus, 421 
the higher value of feature importance a variable has, the larger contribution the variables will make in 422 
determining whether a crash belongs to the LN-LN crash. The ranks of feature importance imply the 423 
relative contribution of a feature in the random forest model. Exposures are the most relevant factors in 424 
determining crash clusters. The estimated pedestrian exposure and estimated pedestrian exposure rank 425 
first in their respective model. AADT ranks fifth in pedestrian crashes and ranks fourth in bicyclist 426 
crashes. The high rank of exposure variables indicates a strong association between the traffic volume of 427 
both vehicles and pedestrians/bicyclists with patterns of driver-victim pair. The driver’s age and victim’s 428 
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age are also among the most important variables, while their gender is less influential. Driver’s age and 429 
victim’s age rank second and third in pedestrian crashes, and driver’s age and victim’s age rank third and 430 
second in bicyclist crashes. For crash specific information, the year of the car in use ranks fourth in 431 
pedestrian crashes, and fifth in bicyclist crashes, indicating the vehicles involved in LN-LN and HW-HW 432 
crashes might have different used years. Time of the day and season ranks eighth in both models, 433 
indicating a relatively sizeable temporal variation of the crash pattern. For road infrastructure 434 
characteristics, speed limit and roadbed width rank sixth and seventh in both pedestrian and bicyclist 435 
crashes, showing the considerable influence of roadway infrastructure characteristics in determining the 436 
crash clusters. However, their feature importance is relatively low compared to previous factors. 437 

 438 

5.3 Partial Dependence Plots 439 

To investigate variables' impact on driver-victim pairs' patterns, we draw the PDPs for the top eight 440 
variables in feature importance for both pedestrian and bicyclist models (Figure 5). For exposure 441 
variables, when annual daily pedestrian volumes are less than 2.6, pedestrian exposure is not influential. 442 
When it is larger than 2.6, it becomes positively associated with the probability of a crash being a LN-LN 443 
crash. This indicates that LN-LN crashes will likely happen on the road with larger pedestrian exposure. 444 
HW-HW crashes will be less likely to occur on the road with larger pedestrian exposure. In bicyclist 445 
crashes, the positive marginal effect of bicyclist exposure on the probability of a crash being a LN-LN 446 
crash will increase when the bicyclist exposure becomes larger. This indicates that LN-LN crashes will be 447 
more likely to happen on the road with larger bicyclist exposure, and the larger the bicyclist exposure, the 448 
higher the probability of LN-LN crashes. One of the potential explanations for this could be missing 449 
active transportation-friendly infrastructure in low income and minority communities, which may force 450 
the bicyclists to share the road with oncoming traffic, increasing their crash probability. However, this 451 
speculation needs further explored and proven by accounting for the bicyclist infrastructure in data 452 
analysis. For vehicular exposure, the pedestrian and bicyclist crashes have similar patterns, which shows 453 
lower AADT does not have significant influence on the probability of a crash being LN-LN crash. While 454 
within the highest quantile of the AADT, it will have a larger positive association for both pedestrian and 455 
bicyclist crashes. This means both pedestrian and bicyclist LN-LN crashes tend to occur on the road with 456 
a larger vehicular volume.  457 

The driver’s and victim’s age are among the most influential factors in socioeconomic characteristics for 458 
both crash types. In the pedestrian crash model, when the driver’s age is less than 64, the probability of a 459 
crash being a LN-LN crash will decrease. When the driver’s age is larger than 64, the probability of a 460 
crash being a LN-LN crash will increase. This means younger drivers are less likely to be involved in a 461 
pedestrian LN-LN crash, while older drivers are more likely to be involved in a pedestrian LN-LN crash. 462 
The PDP shows that as the victim’s age increases, the marginal effect of the probability of being in a LN-463 
LN crash will rise, indicating that older victims are more likely to be involved in a pedestrian LN-LN 464 
crash. In the bicyclist crash model, the driver’s age does not have much influence on the probability of a 465 
LN-LN crash in its lower quintiles. It only has a positive marginal effect when the driver’s age exceeds 66 466 
years old, indicating that older drivers will be more likely to be involved in a bicyclist LN-LN crash. For 467 
the victim’s age, a victim aged 32 or younger will increase the probability of a crash being a LN-LN 468 
crash, while a victim aged 33 or higher will decrease the probability of a crash being a LN-LN crash. This 469 
means bicyclist LN-LN crashes are more likely to involve older drivers and younger bicyclists. 470 

For crash specific information, the year of the car in use, time of the day, and season rank among the most 471 
influential variables. When the year of the car in use is less than six, it has negligible influence on the 472 
probability of a pedestrian LN-LN crash for both crash types. As the year of the car in use increases in 473 
pedestrian crashes, its marginal effect will become larger in a negative direction for both crash types. This 474 
indicates older cars are less likely to be involved in a LN-LN crash and more likely to be involved in an 475 
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HW-HW crash for both pedestrian and bicyclist crashes. The influence of time of the day on pedestrian 476 
LN-LN crashes is positive in summer and autumn and negative in winter, but the effect of the influence is 477 
minimal. For bicyclist crashes, from 6:00 am to 12:00 pm and from 12:00 pm to 6:00 pm, there will be a 478 
higher chance of bicyclist crashes. Lower-income and non-white groups might choose biking as their 479 
mean of transportation to commute during the daytime more frequently than their counterparts due to 480 
economic affordability or behavioral difference, which forms a higher bicyclist crash probability. 481 

For road infrastructure characteristics, the road speed limit has the same patterns in its influence on 482 
pedestrian and bicyclist crashes. When the road speed limit is less than 35 miles per hour, its impact on 483 
the crash clusters is negligible. When the road speed limit exceeds 45 miles per hour, the probability of a 484 
crash being a LN-LN crash will increase in both pedestrian and bicyclist crashes. This indicates that LN-485 
LN crashes for pedestrians and bicyclists are more likely to happen on the road with a higher speed limit. 486 
Roadbed width has little effect when less than 40 feet and only has a positive marginal effect on the 487 
highest quantile, indicating that LN-LN pedestrian crashes are more likely to happen on wider roads. In 488 
the bicyclist crash model, the effect of roadbed width is not influential when it is less than 24 feet but 489 
becomes negative when it is larger than 24 feet, suggesting that LN-LN bicyclist crashes are less likely to 490 
happen on wider roads. 491 
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 492 

Figure 5. PDPs for Variables in Pedestrian and Bicyclist Crash Model 493 
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(Figure 5 continued) 494 

 495 
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6. CONCLUSION 496 

In this study, we used driver-victim pairs to reveal the crash patterns based on clustering drivers' and 497 
victims' ethnicity and income level. Using crash data from Harris County, we applied a probability-based 498 
latent class clustering analysis to classify pedestrian and bicyclist crashes. The clustering results showed 499 
that lower income and non-white drivers tend to be involved in crashes with lower income and non-white 500 
victims (LN-LN crashes). While higher income and white drivers tend to be involved in crashes with 501 
higher income and white victims (HW-HW crashes). This result showed a certain degree of social 502 
segregation in pedestrian and bicyclist crashes, indicating that drivers and victims of similar 503 
socioeconomic characteristics are more likely to be involved in the same crash, while those from different 504 
socioeconomic backgrounds are not. We further analyzed the trajectories of driver-victim pairs and found 505 
all crash types tend to concentrate in downtown Houston. The trajectories of HW-HW crashes are sparser 506 
in their geographic distribution, which suggests higher income and white drivers are driving a long 507 
distance and getting involved in a crash in farther geographic areas than their counterparts. 508 

To explore how the LN-LN and HW-HW crash patterns were shaped, we employed a random forest 509 
algorithm and partial dependence plots to model and interpret the clustering outcomes from LCA models. 510 
Contributing factors for the crash patterns were selected from crash specific information, drivers’ and 511 
victims’ age and gender, roadway infrastructure, and traffic exposure. Pedestrian/bicyclist exposure, 512 
driver’s age, victim’s age, year of the car in use, AADT, speed limit, roadbed width, time of the day, and 513 
season are the most influential variables in pedestrian and bicyclist models. We drew partial dependence 514 
plots for the most influential variables to interpret how the variables are associated with crash patterns. 515 
The results showed that LN-LN crashes tend to happen on the road with larger traffic exposure of 516 
pedestrians/bicyclists and vehicle, which is contradictory to safety in number theory, indicating that the 517 
European model of bicycling/walking is not always implementable for underserved communities in the 518 
US (Elvik and Bjørnskau, 2017). Older drivers and older pedestrians are more likely to be in the same 519 
LN-LN crash, while older drivers and younger bicyclists are more likely to be in the same LN-LN crash. 520 
Longer years of the car in use will increase the probability of HW-HW crashes. Higher speed limits and 521 
wider roads are associated with a higher probability of LN-LN crashes for both pedestrian and bicyclist 522 
crashes. The results indicated the coexistence of LN-LN crashes and road conditions of higher traffic 523 
exposure, higher speed limit, and wider roads. The communities where low-income and ethnic minorities 524 
are concentrated might have higher traffic exposure and less safe road environments, which shapes the 525 
distribution of LN-LN crashes.  526 

This study contributes to the existing body of literature in several ways. First, from a planning and 527 
engineering perspective, this study confirms long-believed hypotheses that there is a clear 528 
sociodemographic and economic segregation of crashes. We also find that the crash-contributing factors 529 
are not usually the same across different communities. These results can help safety practitioners in both 530 
engineering and planning fields to develop and implement practices that will target the main concerns of 531 
each community instead of developing one size fits all strategies. Safe systems approach can be one of the 532 
potential strategies to accomplish this goal. Another significant contribution of this study concerns the 533 
methodological approach. We innovatively use machine learning techniques to address a largely 534 
unexplored research question where the driver's and victim’s characteristics are analyzed simultaneously.  535 

Despite these contributions, the study does have limitations. In this study, we used the police-reported 536 
crash data, which have been considered to underestimate the actual number of crashes. Besides, the 537 
police-reported crash data also lacks other economic and demographic information for drivers and 538 
victims, such as educational level and occupation. The detailed income level is also not reported by the 539 
police agents. On the other hand, collecting individual level income data is not be feasible in an 540 
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observational study and may require additional data collection efforts by implementing experimental 541 
design studies. The success of such experimental design study however is not guaranteed given that many 542 
drivers may be reluctant to share their crash history due to potential liabilities. We therefore use the 543 
surrogate measurement of income level based on drivers’ and victims’ residential census tract. This 544 
approach may be biased, but it is an acceptable alternative in the absence of readily available data on 545 
income measurement. Another limitation of the study is related to the exposure data. Although we 546 
account for bicycle and pedestrian exposure by developing scaling factors, the measurement of exposure 547 
can be improved by implementing more rigorous models.  548 

In this study we used Harris County as the pilot site, which might not be robust, but the analytical 549 
methods can be generalized to other cities and regions with the availability of data. We also do not 550 
account for the bicycle and pedestrian infrastructure such as the quality of sidewalk or bike lane, which 551 
can help to explain some of the findings of this research. Future studies will try to address these 552 
limitations by implementing rigorous statistical models and image analysis tools to obtain the 553 
infrastructure information.  554 
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APPENDIX 729 

 730 

Table S1. Scaling Factors for Pedestrian and Bicyclist Crash from 2017 to 2019 731 

Crash type Year Scaling factor 

Pedestrian crashes 

17 9.99 

18 9.97 

19 10.29 

20 6.06 

Bicyclist crashes 

17 48.31 

18 47.7 

19 46.53 

20 21.32 

 732 

Table S2. Latent Class Cluster Results for Pedestrian and Bicyclist Crashes 733 

Variables 
Pedestrian Crashes Bicyclist Crashes 

Total LN-LN HW-HW Total LN-LN HW-HW 

DR_IncLvl 

Low 456(16.2%) 396(27.1%) 60(4.4%) 192(17.1%) 160(31.7%) 32(5.2%) 

Low to medium 615(21.8%) 439(30.0%) 176(13.0%) 229(20.4%) 144(28.5%) 85(13.7%) 

Medium 815(28.9%) 445(30.4%) 370(27.2%) 280(24.9%) 123(24.3%) 157(25.4%) 

Medium to high 366(13.0%) 98(6.7%) 268(19.8%) 161(14.3%) 42(8.3%) 119(19.3%) 

High 569(20.2%) 84(5.8%) 485(35.7%) 260(23.2%) 36(7.2%) 224(36.4%) 

DR_Ethnicity 

White 883(31.3%) 135(9.2%) 748(55.0%) 385(34.3%) 47(9.4%) 338(54.7%) 

Hispanic 900(31.9%) 722(49.3%) 178(13.1%) 349(31.1%) 230(45.5%) 119(19.3%) 

Black 802(28.4%) 539(36.8%) 263(19.3%) 296(26.4%) 202(39.9%) 94(15.3%) 

Asian 184(6.5%) 45(3.1%) 139(10.2%) 70(6.2%) 18(3.5%) 52(8.5%) 

Other 53(1.9%) 21(1.5%) 32(2.3%) 22(2.0%) 9(1.7%) 13(2.2%) 

VT_IncLvl 

Low 602(21.3%) 493(33.7%) 109(8.0%) 210(18.7%) 188(37.2%) 22(3.6%) 

Low to medium 764(27.1%) 545(37.3%) 219(16.1%) 285(25.4%) 171(33.9%) 114(18.5%) 

Medium 558(19.8%) 217(14.8%) 341(25.1%) 210(18.7%) 75(14.9%) 135(21.9%) 

Medium to high 388(13.7%) 112(7.7%) 276(20.3%) 156(13.9%) 34(6.8%) 122(19.8%) 

High 510(18.1%) 96(6.5%) 414(30.5%) 261(23.2%) 37(7.3%) 224(36.3%) 

VT_Ethnicity 

White 932(33.0%) 265(18.1%) 667(49.1%) 486(43.3%) 103(20.3%) 383(62.1%) 

Hispanic 854(30.3%) 600(41.0%) 254(18.7%) 273(24.3%) 171(33.8%) 102(16.6%) 

Black 844(29.9%) 525(35.9%) 319(23.5%) 298(26.5%) 221(43.8%) 77(12.4%) 

Asian 130(4.6%) 50(3.4%) 80(5.9%) 52(4.6%) 9(1.8%) 43(7.0%) 

Other 61(2.2%) 23(1.5%) 38(2.8%) 13(1.2%) 2(0.3%) 11(1.8%) 

Total 2822(100.0%) 1463(51.5%) 1359(48.5%) 1123(100.0%) 506(45.3%) 617(54.7%) 

 734 

 735 

 736 

 737 
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 739 

Figure S1. The Trajectory of Driver-Victim Pairs for LN-LN and HW-HW Crashes 740 

 741 
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